北京航空航天大學常凌乾課題組在《Small Methods》(IF: 12.4)期刊上發表了 “A Nano-electroporation-DNA tensioner platform enhances intracellular delivery and mechanical analysis towards rapid drug assessment” 的研究文章。
在這項工作中報告了一種納米電穿孔-DNA張力傳感生物芯片,由納米電穿孔遞送模塊和DNA張力傳感檢測模塊組成。兩模塊之間通過拼圖式的結構組裝,增強了器件的靈活性,允許模塊的獨立設計和替換,提供個性化定制的可能,以及支持系統的擴展和升級 (圖1)。
圖1. 納米電穿孔-DNA張力傳感生物芯片的原理示意圖。
為驗證納米電穿孔介導的藥物輸送的速度、效率和安全性,首先建立了一個細胞物理模型,分析了納米通道上細胞周圍的電場和電勢分布(圖2a-c)。結果顯示,當施加的系統電壓在10V~40V范圍內時,會產生>1V的跨膜電勢(細胞膜內外的電勢差),成功地在細胞膜上進行了電穿孔。與此同時,納米通道具有聚焦電場的功能(圖2b),確保在低電壓下有足夠的電泳力將藥物分子推入細胞內。隨后驗證了納米電穿孔遞送模塊較高的安全性(98%)和高效的遞送效率(90%)(圖2d-f),同時將細胞內遞送速度提高了103倍,藥物內化時間縮短至~3秒。
在納米電穿孔遞送模塊完成藥物遞送后,細胞被消化后沿著微流道進入DNA張力傳感器模塊。該DNA張力傳感器通過修飾的膽固醇自發地嵌入細胞膜。在藥物的刺激作用下,一旦細胞力學變化超過DNA張力傳感器預設的力的閥值,DNA張力傳感器發生結構性變化,導致熒光信號的產生。通過分析細胞力學特性的變化情況進而分析細胞的活性。在此,我們使用DNA張力傳感器模塊評估了在不同濃度(0、20、40、60和80 μg/mL)下紫杉醇藥效。其結果和CCK-8試驗對于細胞存活率的定量結果一致,確認了這一DNA張力傳感器用于細胞存活評估的可靠性(圖2g-h)。
圖2. 生物芯片用于藥物遞送的高速、高效和安全性驗證,以及藥物評估的可行性驗證。
最后,以抗腫瘤藥物DOX作為藥物模型,并采用A549細胞(人類非小細胞肺癌)作為細胞模型進一步驗證了NDT平臺的功能性。結果顯示,NDT介導的藥物遞送,在1分鐘內可觀察到DOX(紅色熒光信號)被成功遞送進細胞內(圖3a-b)。而且,在同一藥物濃度的情況下,基于納米電穿孔技術的NDT平臺能有效地提高了細胞的藥物內化率。同時,DNA張力傳感器模塊能夠以熒光信號的強弱直接、快速(<30分鐘)地反映藥物刺激下細胞活性的變化情況(圖3c-e)。而傳統試驗需要> 24小時才能進行一輪藥物評估。研究結果證明了該平臺具有高速、高效和安全性,是一種簡單而強大的臨床藥物篩選工具。
圖3. 生物芯片功能驗證。
該研究工作通訊作者為北航常凌乾教授,北航助理教授董再再為共同通訊作者。第一作者是北航博士研究生杭欣欣、北航碩士研究生黃兆存、北航碩士研究生何詩琦。文章第一單位為北航生物醫學工程學院和生物醫學工程高精尖創新中心。
文章鏈接:https://onlinelibrary.wiley.com/doi/10.1002/smtd.202300915
聲明:化學加刊發或者轉載此文只是出于傳遞、分享更多信息之目的,并不意味認同其觀點或證實其描述。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝。 電話:18676881059,郵箱:gongjian@huaxuejia.cn