久久人妻熟女中文字幕av蜜芽,我我色综合,两女女百合互慰av赤裸无遮挡,脱了内裤掀起pg两边打肿

歡迎來到化學加!萃聚英才,共享化學!化學加,加您更精彩!客服熱線:400-8383-509

【國家杰青】中國科學院金屬所劉崗研究員獲批國家杰出青年科學基金延續資助項目

來源:金屬研究所      2024-08-26
導讀:中國科學院金屬研究所所長劉崗研究員獲批國家杰出青年科學基金延續資助項目

  劉崗,男,漢族,1981年2月出生,中共黨員、九三學社社員,工學博士,研究員,博士生導師。現任中國科學院金屬研究所所長。

  2009年7月于中國科學院金屬研究所,獲得博士學位,期間:2007年3月至2008年10月作為聯合培養研究生在澳大利亞昆士蘭大學開展研究工作。2009年7月加入金屬研究所工作。

  主要從事清潔能源轉化用新材料與器件研究。在Nature, Joule, PNAS, Adv. Mater., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Commun., Natl. Sci. Rev., Sci. Bull.等期刊上發表論文190余篇,被SCI引用3.2萬次,連續(2017-2022年)入選全球高被引學者,獲授權專利33件。

  主持了國家重點研發計劃項目、973計劃項目課題,國家自然科學基金委杰出青年科學基金項目、優秀青年科學基金項目、重點項目以及重點國際合作研究項目等十余項。入選首批國家級人才計劃-青年拔尖人才,入選國家級人才計劃-科技創新領軍人才;獲國家自然科學獎二等獎(第一完成人)、科學探索獎(新基石科學基金會)、中國青年科技獎、中國科學院青年科學家獎、全國百篇優秀博士學位論文獎等十余項學術獎勵;為英國皇家化學會會士。

  兼任中國材料研究學會青年工作委員會及先進陶瓷分委員會副主任、中國可再生能源學會光化學專委會副主任,Wiley出版集團MetalMatEcoEnergy副主編。


簡歷:

1999.9-2003.7  吉林大學                  材料物理專業 學士
  2003.9-2009.5  中國科學院金屬研究所      材料學 博士
  2007.3-2008.10 澳大利亞昆士蘭大學        聯合培養

  2009.7-2012.7  中國科學院金屬研究所    “葛庭燧獎研金”獲得者
  2012.8-2014.9  中國科學院金屬研究所      項目研究員
  2014.10-至今   中國科學院金屬研究所      研究員

研究領域:

太陽能光催化材料

  新型太陽能電池

承擔科研項目情況:

自2009起作為項目(課題)負責人承擔了來自國家自然科學基金委青年基金、面上項目、優秀青年基金以及國際(地區)合作與交流項目,科技部973計劃課題,國家高層次人才特殊支持計劃,中國科學院知識創新工程重點方向性項目課題、太陽能行動計劃課題以及前沿科學研究重點計劃項目(拔尖青年科學家類別),英國皇家學會-牛頓高級學者基金等項目多項。同時作為項目骨干參加了國家自然科學基金委重大項目、重點項目,作為中方合作者參加了國家自然科學基金委海外及港澳學者合作研究基金(2+4年期)項目。

重要科研成果:

光催化效率是由光催化材料的光吸收、光生電荷的分離轉移及表面催化等三方面的特性協同決定的,深入理解并有效調控這些特性能為設計與構建高效太陽能轉換用光催化材料提供科學依據和關鍵支撐。以典型半導體光催化材料為研究對象,針對控制光催化材料效率的關鍵科學問題開展了深入的系統性研究,在實現寬光譜吸收、提升光生電荷的分離轉移能力和晶面調控催化活性等方面取得了系列進展。

寬光譜吸收

致力于通過引入電子結構修飾劑(異質原子或缺陷)來增加寬帶隙半導體材料的可見光吸收,從而更加充分地利用太陽光,特別關注如何通過控制修飾劑的空間分布來實現光吸收邊的帶對帶紅移。同時探索未知的具有寬譜強可見光吸收的光催化材料,且構成元素地殼儲量豐富,拓展寬光譜吸收光催化材料庫。

  Figure 1  Homogeneous N doping in Cs0.68Ti1.83O4. The left panel: UV-visible absorption spectra of (1) homogeneous N doped Cs0.68Ti1.83O4 and (2) surface N doped TiO2. The right panel: optical photograph of Cs0.68Ti1.83O4 samples before and after homogeneous N doping. (Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates, Chem Mater 2009, 21, 1266-1274)

  Figure 2  Homogeneous S doping in g-C3N4. The left panel: schematic of two lattice N sites for substitutional S in perfect graphitic carbon nitride. The right panel: a typical time course of hydrogen evolution from water containing 10 vol% triethanolamine scavenger by Pt-deposited g-C3N4 (a) and g-C3N4-xSx (b) under λ > 300 and 420 nm. (Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4J Am Chem Soc 2010, 132, 11642-11648)

  Figure 3  A red anatase TiO2 with a gradient B/N doping. The left panel: optical photograph of the prepared red TiO2 sample. The right panel: UV-visible absorption of the white TiO2 and red TiO2(A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ Sci 2012, 5, 9603-9610)

  Figure 4  Homogeneous modification with nitrogen vacancies in g-C3N4. The left panel: schematic of the two dimensional sheets of pristine g-C3N4 (melon). The right panel: UV-visible absorption spectra of g-C3N4 and g-C3N4-x (obtained by reducing g-C3N4 in a hydrogen atmosphere). (Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies, Adv Mater 2014, 26, 8046)

Figure 5 Homogeneous amorphization of g-C3N4. The left panel: schematic of the two dimensional sheets of disordered pristine g-C3N4. The right panel: UV-visible absorption spectra of g-C3N4 and amorphous C3N4 (obtained by heating g-C3N4 in an argon atmosphere). (An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation, Adv. Mater., 2015, 27, 4572)

Figure 6 α-S photocatalyst. The left panel: UV-visible absorption spectrum of α-sulfur. The inset is a photograph of the α-S crystal powder. The right panel: Applied potential bias dependence of the photocurrent generated by the photoanode of α-S crystals under UV-visible and visible light irradiation. (α-sulfur crystals as a visible light active photocatalyst, J Am Chem Soc 2012, 134, 9070-9073)

Figure 7 β-boron photocatalyst. The left panel: schematic of atomic structure of β-boron. The right panel: UV-visible absorption spectra of boron powder with and without surface amorphous layer (Visible-light-responsive β-rhombohedral boron photocatalysts, Angew Chem Int Ed 2013, 52, 6242-6245)

提升光生電荷的分離轉移能力

  致力于通過降低光催化材料在某一個或兩個方向的尺寸至納米量級,從而縮短光生載流子從體相擴散至表面所經歷的路徑,進而降低光生電子空穴的復合幾率,提高光催化活性;通過選擇性組合具有合適特性的組元來構筑具有優異空間電荷分離功能的異質結構。

  Figure 8  g-C3N4 nanosheets. SEM images of bulk g-C3N4 and g-C3N4 nanosheets (Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv Funct Mater 2012, 22, 4763-4770)

  Figure 9  Photoanode of Ta3N5 nanorod arrays. SEM image of Ta3N5 nanorod arrays supported on Ta substrate and photoelectrochemical water oxidation activity of Co(OH)x modified Ta3N5 (Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting, Chem Commun 2013, 49, 3019-3021)

Figure 10 TEM images of (a) pristine g-C3N4 and (b) porous g-C3N4 photocatalysts after loading Au particles (black particles) via a photodeposition method. The spatial distribution of Au particles on photocatalysts shows the abundance of reductive sites. Scale bars are 50 nm. (Selective breaking of hydrogen bonds of layered carbon nitride towards greatly enhanced visible light photocatalysis, Adv. Mater., 2016, 28, 6471–6477)

  Figure 11  CdS/ZnS core-shell particles. The left panel: schematic of CdS-mesoporous ZnS core-shell particles with the separation of charge carriers. The middle and right panels: photocatalytic hydrogen generation with ZnS, CdS, and the core-shell particles from the aqueous solution of Na2S/Na2SO3 under visible light. (CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light, Energy Environ Sci 2014, 7, 1895–1901)

  Figure 12  TaB2/Ta2O5 core/shell particles. The left panel: schematic of a TEM image of TaB2/Ta2O5 core/shell particles with a function of promoting the separation of photoexcited electrons and holes. The right panel: band alignment of Ta2O5 referring to Fermi level of TaB2 and Pt as co-catalyst. (Constructing metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution, Adv Energy Mater 2014, 4, 1400057)

Figure 13 Comparison of photocatalytic hydrogen generation from mixture of water/methanol with pristine rutile TiO2 and Ti3+/Ti4+ core/shell rutile TiO2 particles after loading 1 wt% Pt co-catalyst. (Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2Adv. Mate., 2016, 28, 5850-5856)

晶面調控催化活性

  致力于通過控制晶體生長過程中不同晶面的選擇性暴露,實現對光催化材料的表面原子結構的有效調控,研究表面結構-光催化活性的關聯規律,為基于晶面控制設計高性能光催化材料打下基礎。

Figure 14  N doped anatase TiO2 crystal with dominant {001} facets. UV-visible absorption spectrum of nitrogen doped anatase TiO2 crystals with dominant {001}. The insets are optical photograph and SEM image of nitrogen doped anatase TiO2 crystals with dominant {001}. (Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN, J Am Chem Soc 2009, 131, 12868-12869)

Figure 15  Anatase TiO2 crystals with a predominance of low index facets. Schematic (A) and SEM images (B-D) of anatase TiO2 single crystals with different percentages of {001}, {101}, and {010} facets. (On the true photoreactivity order of {001}, {010} and {101} facets of anatase TiO2 crystals, Angew Chem Int Ed 2011, 50, 2133-2137)

Figure 16  {001} dominated Anatase TiO2 microspheres with tunable spatial distribution of boron. The left panel: SEM images of anatase TiO2 microsphere with nearly 100% {001} surface. The right panel: schematic of boron distribution in the microsphere before and after heating. (Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv Funct Mater 2012, 22, 3233–3238)

 

  Figure 17  Ferroelectric field assisted selective deposition of co-catalysts on different sides of facet. (a) Schematic of single-domain & single crystalline ferroelectric material with in-built electric field; (b) SEM image of PbTiO3 nanoplates with dominant {001} facets; (c) SEM image of PbTiO3 nanoplates with a selective depositionof Au and MnOx on different sides; (d) Comparison of photocatalytic hydrogen generation between the PbTiO3 with the selective deposition of reducing co-catalyst Pt and the PbTiO3 with the nonselective deposition of reducing co-catalyst Pt. (Selective Deposition of Redox Co-catalysts to Improve the Photocatalytic Activity of Single-Domain Ferroelectric PbTiO3 Nanoplates, Chemical Communications 2014, 50, 10416 -10419)

Figure 18 Crystal facet dependent interfacial electric conductivity in faceted anatase TiO2 crystal. I-V curves along different crystallography orientations were measured by contacting one TiO2 particle with two tungsten probes in SEM microscope. (Greatly enhanced electronic conduction and lithium storage of faceted TiO2 crystals supported on metallic substrates by tuning crystallographic orientation of TiO2Adv. Mater., 2015, 27 3507–3512)




聲明:化學加刊發或者轉載此文只是出于傳遞、分享更多信息之目的,并不意味認同其觀點或證實其描述。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝。 電話:18676881059,郵箱:gongjian@huaxuejia.cn

主站蜘蛛池模板: 固安县| 鲁山县| 眉山市| 永定县| 连江县| 施甸县| 班玛县| 陈巴尔虎旗| 曲松县| 潼关县| 专栏| 光泽县| 微山县| 六安市| 榆树市| 黑河市| 广灵县| 龙州县| 崇阳县| 集安市| 肥乡县| 措勤县| 蕲春县| 宁陵县| 濮阳县| 临江市| 雷山县| 鸡西市| 都江堰市| 彰化县| 宁远县| 科技| 九台市| 馆陶县| 贵阳市| 大兴区| 正安县| 乡宁县| 漳浦县| 宜阳县| 麻江县|